منابع مشابه
Promoted dehydrogenation in ammine lithium borohydride supported by carbon nanotubes.
In this paper, ammine lithium borohydride (LiBH(4)·NH(3)) was successfully impregnated into multi-walled carbon nanotubes (CNTs) through a melting technique. X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller, and density measurements were employed to confirm the formation of the nanostructured LiBH(4)·NH(3)/CNTs composites. As a consequence, it was found that the dehydroge...
متن کاملConfinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds
LiBH4 is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH4 in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li+ conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support ...
متن کاملRotational Mixing and the Primordial Lithium Abundance
There has been recent progress in the study of the angular momentum evolution of low mass stars (Krishnamurthi et al 1997a). Theoretical models can now be constructed which reproduce the angular momentum evolution of low mass open cluster stars and the distribution of initial conditions can be inferred from young clusters. In this poster we report on the application of these models to the probl...
متن کاملLithium Prophylaxis in Affective Disorder
Out of 108 patients on the rolls in the Lithium clinic, Madurai Medical College and Govt. Rajaji Hospital, Madurai, India, 47 patients suffering from affective disorders receiving lithium continuously for more than three years were analysed with a view to study the recurrences. Thirteen suffered no relapses while on lithium while nineteen experienced them while on lithium. Four were free from r...
متن کاملNanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation.
Successful synthesis and investigation of a new material that uses copper-metal-organic frameworks (Cu-MOFs) as the template for loading LiBH(4) are reported. The nanoconfinement of LiBH(4) in the pores of Cu-MOFs results in an interaction between LiBH(4) and Cu(2+) ions, enabling the LiBH(4)@Cu-MOFs system to achieve a much lower dehydrogenation temperature than pristine LiBH(4).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPJ Web of Conferences
سال: 2015
ISSN: 2100-014X
DOI: 10.1051/epjconf/20158302014